My Cart

Software defined radio antenna

35 €35.00

Availability: On Demand

Introduction : ChipDesign's tunable antenna for mobile devices consists of a low-profile electronically-tunable electrically-small (18.5 cm long) slot antenna, which allows for improved receiver selectivity1. The tunable antenna can be used in conjunction with software defined radios (SDRs) such as for example the Ettus/NI USRP, the FlexRadio, the FUNcube Dongle, the HackRF and the RTL-SDR. Features:   Band coverage: Well-matched (dB20(|S11|) < -10 dB, VSWR < 1.9) frequency bands are the 700 MHz, 866 MHz (ISM), 900 MHz, 1227 MHz (GPS L2), 1800 MHz, 1900 MHz, and 2100 MHz band. For the cellular bands, the full TX band, the duplex gap, and the full RX band are covered, allowing contiguous and non-contiguous intra-band CA with an instantaneous bandwidth up to 100 MHz, if applicable. Poorly-matched (dB20(|S11|) < -6 dB, VSWR < 3) frequency bands are the 433 MHz (ISM) and 450 MHz band for the Seeed version. The presence of the test hardware affects the return loss, as any efficient antenna is sensitive to its surrounding. Return loss measurements were done with the tunable antenna plugged into an Arduino Due and a Seeeduino Lotus micro-controller board, and the results can differ by as much as 100 MHz for the same bias settings. At the edges of the tunable frequency range - i.e. at 400 - 433 MHz and 2.45 - 2.6 GHz, differences in return loss can exist, which can not be compensated anymore by biasing the RF varactor diodes differently. Directivity: The full-space radiating version is recommended for IoT devices and tablets, whereas half-space radiating version, currently under development, is recommended for smartphones in order to meet the SAR specification. A ?0/2 full-space radiator has a directivity of 1.6 dBi, whereas ?0/2 half-space radiator has a directivity of 10log10(?) ? 5 dBi. Efficiency: TBD. The bandwidth and efficiency of electrically-small antennas with sufficient instantaneous bandwidth are bounded by the Chu-Harrington l
Qty:
Add to Compare

Description

Introduction : ChipDesign's tunable antenna for mobile devices consists of a low-profile electronically-tunable electrically-small (18.5 cm long) slot antenna, which allows for improved receiver selectivity1. The tunable antenna can be used in conjunction with software defined radios (SDRs) such as for example the Ettus/NI USRP, the FlexRadio, the FUNcube Dongle, the HackRF and the RTL-SDR. Features:   Band coverage: Well-matched (dB20(|S11|) < -10 dB, VSWR < 1.9) frequency bands are the 700 MHz, 866 MHz (ISM), 900 MHz, 1227 MHz (GPS L2), 1800 MHz, 1900 MHz, and 2100 MHz band. For the cellular bands, the full TX band, the duplex gap, and the full RX band are covered, allowing contiguous and non-contiguous intra-band CA with an instantaneous bandwidth up to 100 MHz, if applicable. Poorly-matched (dB20(|S11|) < -6 dB, VSWR < 3) frequency bands are the 433 MHz (ISM) and 450 MHz band for the Seeed version. The presence of the test hardware affects the return loss, as any efficient antenna is sensitive to its surrounding. Return loss measurements were done with the tunable antenna plugged into an Arduino Due and a Seeeduino Lotus micro-controller board, and the results can differ by as much as 100 MHz for the same bias settings. At the edges of the tunable frequency range - i.e. at 400 - 433 MHz and 2.45 - 2.6 GHz, differences in return loss can exist, which can not be compensated anymore by biasing the RF varactor diodes differently. Directivity: The full-space radiating version is recommended for IoT devices and tablets, whereas half-space radiating version, currently under development, is recommended for smartphones in order to meet the SAR specification. A ?0/2 full-space radiator has a directivity of 1.6 dBi, whereas ?0/2 half-space radiator has a directivity of 10log10(?) ? 5 dBi. Efficiency: TBD. The bandwidth and efficiency of electrically-small antennas with sufficient instantaneous bandwidth are bounded by the Chu-Harrington l

If you are interested in Internet of Things (IoT) or M2M projects check our open source sensor platform Waspmote which counts with more than 100 sensors available to use 'off the shelf', a complete API with hundreds of ready to use codes and a low consumption mode of just 0.7µA to ensure years of battery life.

Know more at:

Get the Starter Kits at: